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ABSTRACT 
I 

The ' f ive-ba l l  f a t igue  t e s t e r  and f u l l - s c a l e  rolling-element 

bearings were used t o  determine the  \effect  of component hardness 

differences of SAE 52100 s t e e l  on bearing f a t igue  and load capacity. 

Maximum fa t igue  l i f e  and load capacity a r e  achieved when t h e  r o l l i n g  
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elements of a bearing a r e  one t o  two poin ts  (Rockwell C) harder than 

the  races. 

res idua l  s t r e s s e s  induced i n  the  races during operation, differences 

i n  component hardness, and fa t igue  l ife.  Differences i n  contact 

temperature and p l a s t i c a l l y  deformed p r o f i l e  r a d i i  could not account 

There appears t o  be an i n t e r r e l a t i o n  among compressive 

f o r  differences i n  f a t igue  l i f e .  
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NOMENCLATURE 

deformation and wear a rea  from surface t race ,  sq. in.  

( a  = D + W) 

load capacity, t h e  load a t  which 90 percent of a group of 

bearings can endure 1,000,000 inner  race revolutions,  

or for b a l l  specimens, 1,000,000 s t r e s s  cycles, 1% 

( C  = P&) 

deformation area from surface t race,  sq in. 

inner  race conformity, percent 

ou ter  race conformity, percent 

depth of running t rack  f rom surface t race ,  in. 

hardness of r o l l i n g  element minus race hardness f o r  f u l l -  

sca le  bearings or f o r  f ive-ba l l  t es t  system, t h e  hardness 

of t h e  lower t e s t  b a l l s  minus t h e  hardness of t h e  upper 

t e s t  ball, Rockwell C 

10-percent f a t igue  l i fe ,  mil l ions of revolutions or s t r e s s  

cycles 

bearing o r  t e s t  system rad ia l  or t h r u s t  load, l b  

normal b a l l  load, 1% 

radius  of b a l l ,  in .  

e f f ec t ive  radius  of b a l l  p r o f i l e  a f t e r  p l a s t i c  deforma- 

t i o n  and wear, in .  

maximum Hertz s t r e s s ,  p s i  

res idua l  s t r e s s  along axis  of ro l l ing ,  p s i  

wear a rea  from surface trace,  sq in .  

contact angle, deg 

maximum shearing stress with residual s t r e s s e s  present,  

p s i  
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INTRODUCTION 

Much research has been directed toward increasing t h e  fa t igue  l i f e  

of b a l l  and r o l l e r  bearings and gears and, hence, t h e i r  r e l i a b i l i t y .  

These e f f o r t s  have l e d  t o  increased operat ional  r e l i a b i l i t y  i n  engine 

and other aerospace equipment and components [l]. Fatigue t e s t i n g  has 

been conducted with bench-type component t e s t e r s  as well  as with full- 

scale  bearings and gears. 

these data i s  t h a t  mater ia l  hardness plays an important ro le  i n  deter-  

mining roll ing-contact fatigue l i f e .  

A general  conclusion drawn from much of 

Several inves t iga tors  using bench-type component t e s t e r s  [ 2  t o  41 

and fu l l - sca le  bearings [5] have reported t h a t  rolling-element fa t igue  

l i f e  increased with increasing hardness f o r  several  common bearing 

s tee ls .  Since deformation and wear t e s t s  ind ica te  t h a t  res i s tance  

t o  permanent p l a s t i c  deformation increases with increasing hardness, 

it was thus concluded t h a t  a q u a l i t a t i v e  cor re la t ion  e x i s t s  between 

fa t igue  l i f e  and resis tance t o  p l a s t i c  deformation [ 3  and 41. 

Where p l a s t i c  deformation does occur under r o l l i n g  contact, t h e  

Mate- Hertz s t r e s s  as  calculated may be approximate only [ 6  and 71. 

r i a l  hardness or resis tance t o  p l a s t i c  deformation thus has a two- 

fold effect  on fa t igue  l i f e ;  as hardness i s  decreased, f a t i g u e  l i f e  

decreases because of an inherent decrease i n  mater ia l  strength,  bu t  

a t  t h e  same t i m e  res is tance t o  p l a s t i c  deformation, and, thus, t h e  

contact s t r e s s  decrease. T h i s  l a t t e r  e f fec t  would increase fat igue 

l i f e .  Therefore, the two e f f e c t s  a r e  ac t ing  i n  opposition t o  each 

.i 

other. 
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It has been shown t h a t  res idua l  compressive s t r e s s e s  a r e  developed 

below rol l ing-contact  surfaces,  t h e  magnitude of which appeared t o  be a 

funct ion of time [ 8  and 91. Additionally, it i s  speculated t h a t  these  

res idua l  s t r e s s e s  may be a function of mater ia l  hardness. Residual com- 

pressive s t r e s s e s  induced by mechanical processing operations were found 

t o  increase the  f a t igue  l i f e  of b a l l s  and complete bear ings [lo]. Thus, 

an addi t iona l  var iab le  t h a t  can be related t o  rolling-element f a t igue  i s  

induced res idua l  stress due t o  bearing operation. 

The object ives  of t h e  research described i n  t h i s  paper, which i s  

based on t h e  work reported i n i t i a l l y  i n  references [11 and 123 were: 

(1) t o  determine i f  a maximum bearing f a t igue  l i f e  does e x i s t  a t  some 

optimum component hardness combination, (2)  t o  determine i f  a r e l a t i o n  

e x i s t s  among p l a s t i c  deformation, r e l a t ive  hardness of bearing components, 

and f a t igue  l i f e ,  and (3) t o  determine i f  res idua l  s t r e s s e s  induced i n  

t h e  subsurface zone of resolved maximum shearing stress co r re l a t e  with 

component hardness combinations and fa t igue  l i f e .  All experimental re- 

s u l t s  were obtained with t h e  same heat of mater ia l  and lubr icant  batch 

except where indicated.  

APPARATUS 

The f ive -ba l l  f a t igue  t e s t e r  used i n  t h i s  inves t iga t ion  i s  shown 

schematically i n  Figs. l ( a )  and (b) and was previously described i n  

reference [ 3 ] .  

inch-diameter t e s t  b a l l  pyramided upon four  l/Z-inch-diameter lower 

t e s t  b a l l s  t h a t  a r e  posit ioned by a separator  and are f r e e  t o  r o t a t e  

i n  an angular contact raceway (see  Fig. l ( b ) ) .  

Essent ia l ly  t h i s  fa t igue apparatus cons is t s  of a 1/2- 
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The upper t e s t  b a l l  i s  analogous i n  operation t o  t h e  inner  race 

of a b a l l  bearing, while t he  lower t e s t  b a l l s  and the  angular contact 

raceway are  analogous t o  t h e  b a l l s  and t h e  outer  race of a b a l l  bearing, 

respectively. 

specimen receives 3 s t r e s s  cycles. 

matic f a i l u r e  detect ion and shutdown. Lubrication i s  provided by means 

of a once through mist lub r i ca t ion  system. 

For every revolut ion of t h e  dr ive  shaf t ,  t h e  upper t e s t  

Instrumentation provides f o r  auto- 

The f ive-ba l l  t e s t e r  was modified i n  order t o  measure t h e  surface 

temperature near t he  contact a rea  of a modified upper t e s t  b a l l  specimen 

during operation. Fig. l ( c )  i l l u s t r a t e s  t he  t e s t  specimen and t h e  mount- 

ing assembly, which i s  inser ted  i n t o  the  dr ive  spindle of t h e  f ive -ba l l  

fa t igue  t e s t e r  ( see  Fig. l ( a ) ) .  

t he  t i p  of which i s  a t  one edge of t he  specimen running track. 

hole was d r i l l e d  through t h e  dr ive  spindle t o  i n s e r t  t h e  thermocouple 

wire. 

assembly mounted a t  t he  top end of t h e  dr ive spindle. 

The specimen has a thermocouple attached, 

An a x i a l  

The thermocouple EMF' w a s  taken out through a slipring-brush 

SPECIMENS AND PROCEDURE 

SAE 52100 1/2-inch-diameter b a l l  specimens were t e s t ed  i n  the  f ive-  

b a l l  fa t igue t e s t e r .  

of t he  eleven l o t s  were from t h e  same heat  of mater ia l  according t o  the  

manufacturer. 

Rockwell C hardness g rea t e r  than 66. 

f o r  t h e  remaining nine l o t s  ( t a b l e  1, l o t s  A t o  I), which o r ig ina l ly  

had a Rockwell C hardness of approximately 66, by varying the  temper- 

ing temperature and t h e  tempering time f o r  each l o t .  A schedule of' 

t he  heat  treatment used f o r  each of these l o t s  i s  shown i n  t a b l e  1. 

The b a l l  specimens were divided i n t o  11 l o t s .  Nine 

The two l o t s  from t h e  separate  heat  of mater ia l  had a 

A range of hardness was obtained 

. 
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The l o t s  were divided i n t o  f i v e  groups having nominal Rockwell C hard- 

nesses of 60, 62, 63, 65, and 66. Balls from each hardness group were 

used a s  lower t e s t  b a l l s  with th ree  l o t s  of upper t e s t  b a l l s  having 

average Rockwell C hardnesses of 60.5, 63.2, and 65.2. 

Retained aus t en i t e  and p r i o r  aus t en i t i c  gra in  s i z e  a re  a l s o  given 

i n  t a b l e  1. 

l o t s ,  c leanl iness  and p r i o r  aus t en i t i c  gra in  s ize  were held r e l a t i v e l y  

con s t  ant.  

Since only the  tempering temperature was varied between 

P l a s t i c  deformation and wear data were obtained f o r  upper tes t  

b a l l s  of t h e  f i v e  nominal hardnesses run on lower tes t  b a l l s  having 

average Rockwell C hardnesses of 60.5, 63.2, and 65.2. For each upper 

b a l l  hardness, e ight  t e s t s  were run, each f o r  30,000 s t r e s s  cycles. 

Six p r o f i l e  t r a c e s  of each upper b a l l  running t r ack  were made i n  a 

contour t r a c e r  a t  d i f f e ren t  locat ions around t h e  b a l l  perpendicular 

t o  t h e  running t rack.  

Fatigue and deformation and wear t e s t s  were conducted a t  a maxi- 

mum H e r t z  s t r e s s  of 800,000 ps i ,  a drive shaf t  speed of 10,000 rpm, 

and a contact angle of 30° (indicated by p i n  Fig. l ( b ) )  with a 

highly pur i f ied  naphthenic mineral oil. 

t h e  f a t igue  t e s t s  s t ab i l i zed  a t  150' t o  165' F with no heat added. 

The f ive -ba l l  system w a s  considered f a i l e d  when a f a t igue  spa11 de- 

veloped on e i t h e r  t h e  upper or lower t e s t  b a l l  specimens. 

of t h e  l m  s t r e s s  developed on t h e  outer race-ba l l  contact, no 

f a i l u r e  occurred on t h e  outer  race. 

The race temperature i n  

Because 

Residual s t r e s s  measurements were made on f i v e  upper t e s t  b a l l  

specimens having a Rockwell C hardness of 63.2 run against  lower t e s t  
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b a l l s  of Rockwell C hardness 60 t o  66 under t h e  aforedescribed t e s t  

conditions. The r e s u l t s  were compared with f a t i g u e  l i v e s  obtained 

with the same hardness combinations. 

Fatigue t e s t s  were a l s o  conducted with 207-size r a d i a l  b a l l  

bearings. 

Inner race diameter, in. 1.6648 

Outer race diameter, in.  2.5411 

The dimensions of t h e  bearings a r e  as follows: 

B a l l  diameter, in. 0.4375 

Inner race conformity, f , percent 51 

Outer race conformity, fo, percent 52 

Specification ABEC 5 

The inner and outer  races  ( a l l  from the  same heat)  were tempered t o  

a nominal hardness of Rockwell C 63. The balls were divided i n t o  four  

groups and tempered according t o  the  tempering schedules given i n  t a b l e  

1 t o  produce nominal Rockwell C hardnesses of 60, 63, 65, and 66. Four 

l o t s  of bearings were assembled, each conta in ingbal l s  of a s p e c i f i c  

hardness. 

(producing maximum Hertz s t r e s s e s  of 352,000 and 336,000 p s i  a t  the  

inner  and outer  races, respectively),  and a speed of 2750 rpm, with 

t h e  highly pur i f ied  napthenic mineral o i l  lubr icant  and no heat added. 

i 

These bearings were run a t  a radial load of 1320 pounds 

RESULTS AND DISCUSSION 

Fatigue Life Results 

For applications where high r e l i a b i l i t y  i s  of paramount importance, 

ear ly  f a i l u r e  of bearings i s  of primary i n t e r e s t .  

cant l i f e  on a Weibull p l o t  i s  t h e  lo-percent l i f e .  

w a s  analyzed according t o  t h e  s t a t i s t i c a l  methods of reference [131. 

The 10-percent l i v e s  are tabulated i n  t a b l e  2, 

Hence, t h e  s i g n i f i -  

The f a t i g u e  data 

The load capacity C 9 
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where 

b ina t ion  tes ted ,  and i s  p lo t ted  i n  Fig. 2 as  a funct ion of AH , t h e  

hardness of t h e  lower t e s t  b a l l s  minus t h a t  of t h e  upper t e s t  b a l l .  

System fa t igue  l i f e  and load capacity are found t o  be maximum 

C = P z  , i s  a l s o  summarized i n  t a b l e  2 f o r  each hardness com- 

where t h e  lower t e s t  b a l l  hardness was one t o  two poin ts  (Rockwell C) 

g r ea t e r  than t h a t  of t he  upper t e s t  ball f o r  varying hardnesses of both 

components. These r e s u l t s  i nd ica t e  tha t  a maximum bearing l i f e  can be 

achieved i f  t h e  r o l l i n g  elements of a bearing a re  one t o  two points  

(Rockwell C) harder than the  races. 

Fai lure  Location 

From probabi l i ty  theory and reference [14], it w a s  determined 

tha t ,  f o r  upper and lower tes t  b a l l s  o f  equal f a t igue  strength,  the  

probabi l i ty  of a f a i l u r e  occurring i n  e i t h e r  one or  the  other  i s  

approximately equal. It w a s  shown i n  references [ 3 ]  and [ 4 ]  that 

t h e  l i f e  of a given r o l l i n g  element increased with increased hard- 

ness of t h a t  element. Consequently, it would be expected t h a t  where 

the  hardness of a component was increased, t h e  probabi l i ty  of f a i l u r e  

occurring i n  t h e  component would decrease. Therefore, for t h e  s e r i e s  

of tes ts  reported here in  it w a s  expected tha t ,  as the  hardness of t h e  

lower b a l l s  w a s  increased with a given upper b a l l  hardness, t he re  

would be  a g rea t e r  probabi l i ty  of the upper t e s t  b a l l  f a i l i ng .  

Table 2 t abu la t e s  t h e  number of upper ball  f a i lu re s ,  lower b a l l  

f a i l u r e s ,  and t h e  number of t e s t s  where both upper and lower tes t  

b a l l  f a i l u r e s  occurred. The f a i l u r e  index ind ica t e s  t he  number of 

f a t igue  f a i l u r e s  r e l a t i v e  t o  t h e  number of t e s t s  i n  each ser ies .  

Where the re  w a s  an upper and lower ball f a i lu re ,  it w a s  assumed 

from t h e  nature  of t h e  t e s t i n g  and the method of de tec t ing  a f a i l u r e  
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t h a t  the lower b a l l  f a i l e d  p r i o r  t o  t h e  upper b a l l .  The percent of 

t o t a l  f a i l u r e s  occurring i n  t h e  upper b a l l  i s  a l s o  given i n  t a b l e  2 

and i s  plot ted against  AH i n  Fig. 3. A s  w a s  expected, increased 

AH resulted i n  more upper t e s t  b a l l  f a i l u r e s .  Where t h e  upper and 

lower t e s t  b a l l s  were of the  same hardness ( i . e . ,  AH = 0), approxi- 

mately h a l f  t h e  f a i l u r e s  i n  each s e r i e s  occurred i n  t h e  upper t es t  
. rr- 

b a l l .  

Examination of t a b l e  2 and Fig. 2 shows t h a t  t h e  data obtained 

with the upper t e s t  b a l l s  having an average Rockwell C hardness of 

63.2 a re  generally representat ive of a l l  ,.other data obtained. From 

t h e  Rockwell C 63.2 upper tes t  b a l l  data, t h e  10-percent l i v e s  of 

t h e  upper and lower tes t  b a l l s  were determined. 

p lo t ted  separately as a function of AH 

These data a r e  

together with t h e  system 

10-percent l i v e s  i n  Fig. 4. It can be seen from t h i s  f i g u r e  t h a t  

t h e  upper t es t  b a l l  appears t o  control  t h e  trend i n  system l i f e .  

Deformation and Wear 

Deformation and wear and thus contact s t r e s s  can be affected 

The a l t e s t i o n  produced on t h e  by material  hardness [ 3  and 151. 

roll ing-contact surfaces takes  three  bas ic  forms: (a) e l a s t i c  de- 

formation, (b) p l a s t i c  deformation, and ( e )  wear. The l a t t e r  two 

forms resu l t  i n  permanent a l t e r a t i o n  of t h e  b a l l  surface contour 

t h a t  can be measured a f t e r  tes t ing .  Figure 5 i s  a schematic diagram 

of the  transverse sect ion of a b a l l  surface showing t h i s  permanent 

a l te ra t ion .  

Deformation and wear data were obtained f o r  upper t e s t  b a l l s  

having nominal hardnesses of 60, 62, 63, 65, and 66 run against  

lower t e s t  b a l l s  having average Rockwell f’hardnesses of 60.5, 
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63.2, and 65.2, under the  conditions previously described. Average 

values f o r  the  deformation and wear areas a r e  given i n  t a b l e  3. 

t h e  use of trigonometric re la t ions ,  an e f f e c t i v e  b a l l  radius R at 

t h e  point of contact can be calculated [E] i n  terms of a, h, and R 

By 

P 

( a b )  R =  
2 [ R  - JRf- (a /h)L - hl  

On the  b a s i s  of t h i s  equation f o r  R an e f fec t ive  maximum Hertz 

s t r e s s  f o r  30,000 s t r e s s  cycles of operation can be calculated f o r  
P’ 

each component hardness combination. 

t h e  value R obtained after 30,000 s t r e s s  cycles approximates the 

value t h a t  would be obtained a f t e r  an i n d e f i n i t e  number of stress 

(Based upon previous experience, 

P 

cycles).  

or may not be accumulative i n  the  lower t es t  balls (because of t h e i r  

I n  order t o  account f o r  the  p l a s t i c  deformation t h a t  may 

unknown degree of randomness of ro ta t ion) ,  th ree  calculat ions were 

made f o r  each hardness combination. Deformation of a lower t e s t  b a l l  

w a s  assumed t o  be one of t h e  following: (a) none, (5) equal t o  t h a t  

of t h e  upper b a l l ,  o r  ( e )  equal t o  the value obtained with t h e  reverse 

hardness combination. Contact s t resses  recalculated on the  bas i s  of 

t h e  assumptions are given i n  t a b l e  3. Based on these recalculated 

s t resses ,  t h e o r e t i c a l  r e l a t i v e  10-percent l i v e s  were calculated 

I -  based on t h e  re la t ionship  L o: l/S9 . These values a re  a l s o  pre- 
max 

sented i n  t a b l e  3 and a r e  compared with t h e  r e l a t i v e  experimental 

10-percent l ives .  It i s  apparent from these values t h a t  the d i f f e r -  
: /. 4 

ences i n  e f f e c t i v e  H e r t z  s t r e s s  with varying component hardness com- 

binat ions cannot account f o r  t h e  actual  differences i n  fa t igue  l i f e .  
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Contact Temperature 

A possible  cause of differences i n  f a t igue  l i f e  with d i f f e r e n t  

hardness combinations may be t h e  contact temperature induced by s l i d i n g  

with the contact zone [6] .  Temperature gradients  i n  the  contact zone 

can induce thermal s t r e s ses  and a l ter  t h e  calculated maximum shearing 

s t r e s s .  

t r ack  of a s e r i e s  of upper t es t  b a l l s  having a Rockwell C hardness of 

63.2 run against  f i ve  s e r i e s  of lower t e s t  b a l l s  having average hard- 

nesses from 60.5 t o  66.4. Table 4 contains a tabula t ion  of these  data. 

These temperatures a re  a b e t t e r  approximation of t h e  ac tua l  temperature 

i n  t h e  contact zone of a b a l l  specimen than temperatures measured a t  

the  outer  diameter of t h e  race. It w i l l  be noted from these  da ta  t h a t  

there  are  no s ign i f i can t  differences i n  t h e  measured near contact 

temperature of t h e  hardness combinations measured. These r e s u l t s  

tend t o  ind ica te  t h a t  thermal s t r e s ses  due t o  temperature gradients  

i n  t h e  contact zone of two r o l l i n g  bodies of d i f f e r e n t  hardnesses 

cannot account f o r  t h e  difference i n  f a t igue  l i f e  discussed herein. 

Temperature measurements were taken a t  t h e  edge of t h e  running 

Residual S t ress  

It was shown i n  references [17] and [ 9 ]  that r e s idua l  compressive 

s t r e s s e s  are developed i n  bodies i n  roll ing-contact;  t h e  magnitude of 

which appeared t o  be a function of time. Additionally, res idua l  com- 

pressive s t r e s ses  induced by mechanical processing operations were 

found t o  increase t h e  fa t igue  l i f e  of b a l l s  and complete bearings 

[lo]. 

f ive -ba l l  system i s  s t ressed  many more times than a point  on any Of 

t h e  lower t e s t  ba l l s ,  so t h a t  it would be l i k e l y  t h a t  t h e  upper t e s t  

A un i t  volume on t h e  upper t e s t  b a l l  running t r ack  i n  the  
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b a l l  would absorb more energy and build up a proport ional ly  g rea t e r  

amount of subsurface res idua l  s t r e s s  than would each of the  lower t e s t  

b a l l s .  

Induced res idua l  s t r e s s  can e i t h e r  increase or decrease t h e  maximum 

shearing stress [la], according t o  t h e  following equation: 

where the  pos i t ive  or negative s ign of S ind ica tes  a t e n s i l e  or a 

compressive res idua l  s t r e s s ,  respectively.  A compressive res idua l  s t r e s s  
ry 

would reduce t h e  maximum shearing s t r e s s  and increase fa t igue  l i f e  [12] 

according t o  t h e  following equation: 

Five upper t e s t  b a l l s  having a Rockwell C hardness of 63.2 t h a t  

were run f o r  approximately the  same number of  stress cycles against  

lower b a l l s  having Rockwell C hardnesses of 59.7, 61.8, 63.4, 65.0 

and 66.2 were selected f o r  res idua l  s t r e s s  measurements. Standard 

x-ray d i f f r a c t i o n  techniques (pr iva te  communication from R. Lindgren 

and W. E. Littmann of t he  Timken R o l l e r  Bearing Company, Canton, Ohio) 

were used t o  measure res idua l  s t r e s ses  a t  a depth of 0.005 inch 

beneath the  running track. 

The res idua l  s t r e s ses  below the t r ack  ( t a b l e  5) were found t o  

be compressive and varied between 178,000 and 294,000 ps i .  Their 

values were considerably higher than those ant ic ipated (based on t h e  

data  from [17 and 91). Even so, it should be noted t h a t  these measured 
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s t r e s ses  are  l e s s  than the  t r u e  values because t h e  x-ray beam could 

not be focused e n t i r e l y  i n  the  s t ressed  zone. 

Background res idua l  s t r e s s e s  (measured outside t h e  s t ressed  zone) 

were zero i n  samples 2, 3, and 4 and 59,000 and 20,000 p s i  compressive 

i n  specimensland 5. 

increase the  value of t he  measured res idua l  s t r e s s e s  i n  t h e  s t ressed  

zone. Consequently the  values f o r  sixcimeris 1 xi; 5 mighi be high' r e ld -  

t i v e  t o  t he  other samples. 

These background s t r e s s e s  would have a tendency t o  

The measured compressive res idua l  s t r e s s e s  a r e  p lo t t ed  as  a 

function of AH i n  Fig. 6. From t h i s  f igure,  it i s  noted t h a t  t he  

measured s t r e s s  increases  with increasing lower t e s t  b a l l  hardness t o  

an intermediate hardness where a peak was obtained. On the  b a s i s  of 

these  l i m i t e d  data, t he  apparent maximum res idua l  s t r e s s  occurs at a 

value of AH s l i g h t l y  grea te r  than zero. 

The measured values of compressive res idua l  s t r e s s  were used t o  

ca l cu la t e  t heo re t i ca l  10-percent l i v e s  of the upper t e s t  b a l l  using 

t h e  aforementioned relat ionships .  

shown i n  t ab le  5, pred ic t  a peak l i f e  a t  the  maximum compressive re- 

s idua l  s t r e s s  which occurs a t  a AH s l i g h t l y  g rea t e r  than zero. 

Although these r e s u l t s  which a re  based on l imi ted  res idua l  s t r e s s  

measurements, do not show t h e  predicted peak l i f e  a t  a AH of one 

t o  two points  (Rockwell C hardness) such as w a s  experimentally 

determined, it i s  apparent t h a t  an i n t e r r e l a t i o n  e x i s t s  among 

differences i n  component hardness, induced compressive res idua l  

s t r e s s ,  and fa t igue  l i f e .  

These calculated 10-percent l i ves ,  
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Full-Scale Bearing Tests 

I n  order t o  i l l u s t r a t e  the e f fec t  of AII on bearing f a t i g u e  and 

load capacity, four  l o t s  of SAE 52100 207-size deep groove b a l l  bearings, 

each with b a l l s  of a spec i f ic  hardness and races of Rockwell C hardness 

63, were fa t igue  t e s t e d  a t  a radial  load of 1320 pounds, a speed of 2750 

rpm with the  mineral lubr icant  and no heat added. The r e s u l t s  of these 
: k, 

t e s t s  a r e  shown i n  Fig. 7 and tabulated i n  t a b l e  6. T6e r e l a t i v e  bear- 

ing load capacity i s  shown as a function of AH i n  Fig. 8. For com- 

parison purposes, t h e  range of predicted r e l a t i v e  capacity based on 

the  f i v e - b a l l  fa t igue  data i s  a l s o  presented. A s  with t h e  f i v e - b a l l  

system, it can be concluded t h a t  maximum bearing fa t igue  l i f e  and load 

capacity can be achieved where the  r o l l i n g  elements of the bearing a r e  

one t o  two points  (Rockwell C hardness ) -  grea ter  than the races .  

SUMMARY 

System f a t i g u e  l i v e s  were determined i n  f ive-ba l l  i a t i g u e  t e s t e r  

with components having various hardness combination:. Upper t e s t  

b a l l s  of Rockwell C hardnesses of 60..5, 63.2, and 65.2 were run 

against  lower t e s t  b a l l s  of nominal Rockwell C hardnesses 60, 62, 

63, 65, and 66. These t e s t s  were run with no heat added a t  an 

i n i t i a l  maximum Hertz s t r e s s  of 800,000 psi ,  10,000 rpm, and a 30 
0 

contact angle using a highly purif ied napthenic mineral o i l  l u b r i -  

cant. Residual s t r e s s  measurements were made on upper t e s t  b a l l  

specimens of Rockwell C hardness 63.2 run against  lower t e s t  b a l l s  

of varying hardnesses. P l a s t i c  deformation and wear, and near con- 

t a c t  temperatures of f ive-ba l l  t e s t e r  specimens were  also studied.  Four lots 

of 207-size deep groove b a l l  bearings each with b a l l s  of a s p e c i f i c  

hardness were fa t igue  tested a t  a radial  load of 1320 pounds, a 
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speed of 2750 rpm with the  mineral o i l  lubr icant  and no heat added. 

The following r e s u l t s  were obtained: 

1. Bearing fa t igue  l i f e  and load capacity were found t o  be 

maximum where the r o l l i n g  elements of t h e  bearing a re  one t o  two 

poin ts  (Rockwell C hardness) g rea t e r  than t h e  races f o r  varying 

hardnesses of both components. 

2. An i n t e r r e l a t i o n  i s  indicated among differences i n  component 

hardness, induced compressive res idua l  s t r e s s ,  and f a t igue  l i fe .  The 

apparent maximum res idua l  s t r e s s  occurs where the  r o l l i n g  elements 

a re  of s l i gh t ly  grea te r  hardness than the race. 

3. Differences i n  p l a s t i c  deformation and wear f o r  d i f f e ren t  

hardness combinations could not account f o r  measured differences i n  

f a t igue  l i f e .  

4. The measured near contact temperatures based on data obtained 

with f i v e  hardness combinations were not s ign i f i can t ly  d i f f e r e n t  ind i -  

ca t ing  tha t  any thermal e f f e c t  on f a t igue  l i f e  could not account f o r  

differences i n  l i f e .  
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TABLE 1. - SAE 52100 MATERIAL PROPERTIES AND HEAT TREATMENT 

Designation Average Retained 

Group 

I 

I1 

I11 
(D co co 
N 
I w 

IV 

v 

Lot 

A 

B 

C 

D 

E 

F 

G 

H 
s 
J 

K 

Rockwell C austenite, 
hardness percent by 

volumea 

59.7 >2 

60.5 8.9 

61.8 12.8 

61.9 12.3 

63. 2 12.5 

63. 2 12.8 

63.4 15.6 

65.0 18.4 

e-t 
66. 2 11.8 

66.4 13.3 

- 

b Heat treatment 
First temper Second temper 

in oil in oil 

60 minutes 
at 250' F 

60 minutes 
at 250' F 

60 minutes 
at 250' F 

60 minutes 
at 250' F 

60 minutes 
at 2500 F 

60 minutes 
at 450' F 

60 minutes 
at 350' F 

60 minutes 
at 320' F 

90 minutes 
at 250' F 

None 

A l l  groups had prior austenitic grain size (AS'IM) of 12. 

A l l  groups austenitized fo r  30 minutes at 1550° F to 1600' F and 
all quenched to 1250 F prior to tempering. 

a 
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63.2 (111-E) 
65.0 (IV-H) 
66.2 ( V - J )  

CD co co 
(\7 
I w 

130 18 7 
130 186 
1 2 5  180 

TABLE 4. - TEMPERATURE AT EDGE OF CONTACT ZONE FOR MODIFIED FIVE- 

BALL FATIGUE TESTER W I T H  1/2-INCH-.RIAMETER SAF: 52100 STEEL BALLS 

[ I n i t i a l  maximum Hertz stress, 800,000 psi;  sha f t  speed, 
10,000 rpm; contact angle, 3OO.l -~ 

I I 

Upper t es t  b a l l  
Rockwell C 

hardness 
(and designationa) 

Lower t e s t  ball 
Rockwell C 
har dne s s 

zone of 
(and designationa) 

upper 

18 4 I iii I 184 
63.2 (111-E) 60.5 ( I - B )  I 61.8 ( 1 1 - C )  

a See t a b l e  I. 

L 
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. - -  I 

Calculated 
10 -percent 

l i f e  of 
upper t e s t  
b a l l  based 
on r e s idua l  

1 s t resses ,"  
mi l l ions  of 

stress cycle: 

0.391 
.641 

1.278 
3.23 

11.3 

TABU 5. - RFSIDUAL STRESS MEASUREMENTS OF UPPER TEST BALL SPECIMENS 

36.1  
32.4 
37.9 
40.0 
39.1 

HAVING ROCKWELL C HARDNESS OF 63.2 

Under track 

b-178x103 
-198 
-294 
-223 
-257 

~ 

3pe c i m e  r 
number 

Lower 
t e s t  b a l l  
3ockwe11 C 
hardness 

Difference i r  
Ro&well C 

hardness be - 
tween lower 
and upper 

t e s t  balls. 

59.7 
61.8 
63.4 
65.0 
66.2 

-3.5 
-1.4 

.2 
1.8 
3.0 

Spec imen 
running 
time , 

mil l ions  
of s t r e s s  

cycles 

Measured r e s i d u a l  s t r e s s  
a t  depth of 0.005 inch 

below b a l l  surface 
removed by 

e lec t ropol i sh ing ,  
p s i  

r- 
1utsi.de track 

- 
-5 9x103 
0 
0 
0 

-20  
.r* , - - - .A.- 

a 

bNegative s ign  denotes compressive res idua l  stress. 
Based on experimental 10-percent l i f e  of 1 1 . 3 ~ 1 0 ~  s t r e s s  cycles a t  AH = 0.2. co 

a3 
a3 
CY 
I w 
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B a l l  Differ-  10 - 
percent 

l i f e ,  
hardness . Rockwell C fa t igue  

Rockwell C 

TABLE 6. - BEARING FATIGUE LIFE AND LOAD CAPACITY WITH VARYING HARDNESS; 

RADIAL LOAD, 1320 LB; SPEED, 2750 Rm; RACE ROCKWELL C HARDNESS, 63 

6o 1 bet! n 
b a l l  and 
races ,  I 

c_ 

i 
I 

mill ions of 
inner race 
revolutions 

21 

63 0 I 77 

65 2 10 6 

3 74 
: 
i 66 I 

Bearing 
radial 

capaci ty  
based on 

experi-  
mental 

l i f e ,  
C 

l b  

3640 

5620 

6250 

Ratio of 
c t o  c 

of 
A H = 2  

0.58 

.90 

1.00 

89 
._ _ .  _- .---- 

~~ 

Conf idencc 
number, 
per cent 

--- 
89 

60 

--  

62 
___*.--.-.-.. 

Failure  
index 

(number of 
f a i l u r e  s 

out of 
number of 
bearings 
t e s t e d )  

1 4  out of 2E 

11 out of 2: 

1 2  out of 2E 

1 4  out of 2: 
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(a) Cutaway view of five-ball fatigue tester. 

LUwer test ball 
RacewayJ 

CD-6838 
(b) Schematic of five-ball tester. 

Thermocouple wires to 
slipring-brush assembly-, ,-Taper shaft inserted ,,,' intodrive spindle 

(c) Operating-temperature measuring device. 

terminal 

Fig. 1. -Test apparatus. 
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Fig. 2. - Load capacity of five-ball system as a function of difference i n  hardness between lower 
test balls and upper test ball. 
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Fig. 3. - Percent of upper test ball failures for test group as a function of differ- 
ence in  hardness between lower test balls and upper test ball. 
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Fig. 4. - 10-Percent l i fe of five-ball system and components as a funct ion of 
difference in hardness between lower test balls and upper test ball having 
Rockwell C hardness of 63.2. 
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Fig. 5. - Surface profile after deformation and wear of cross section of stressed 
ball track. (Not to scale. 1 
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Background stress 

0 1 2 3 4  
AH, Rockwell C 

balls having Rockwell C hardness of 63.2 as a f u n d i o n  of difference in 
hardness between lower test balls and upper test ball. 

Fig. 6. - Measured compressive residual stress in track of upper test 
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Fig. 7. - Rolling-contact fatigue l i fe of 207-size deep groove ball bearings 
hav ing SAE 52100 races of Rockwell C hardness 63 wi th  SAE 52100 balls 
of varying hardness. Radial load, 1320 pounds; speed, 2750 rpm; no  
heal added. 
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Fig. 8. - Relative radial load-carrying capacity of 207-size deep groove ball bearing as a function of dif- 
ference in hardness between balls and races. 
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